Research Center for Quantum Information

Towards optimization of quantum circuits

Michal Sedlák msm@sedos.sk

Supervisor: PhD. Martin Plesch

Introduction

Practical realization of

- quantum communication
- quantum cryptography
- quantum computation

assumes that we are able to control chosen quantum system i.e.:

- Prepare it in chosen state
- Perform a desired operation on it
- carry out measurement

Introduction

In the real experiments we are able to control only:

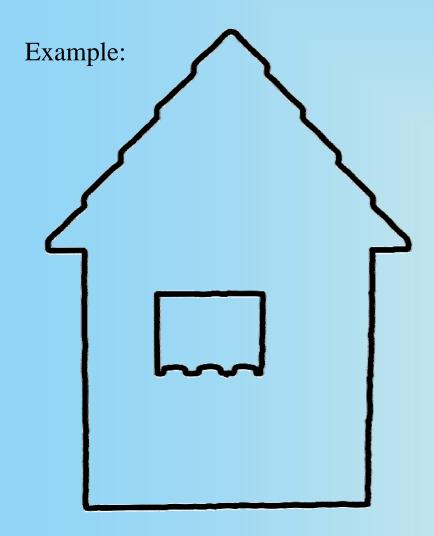
- interaction between pairs of two-level subsystems (qubits)
- interaction between selected qubit and the environment

Due to this reason:

The desired operation is performed as a sequence of simpler steps –
 quantum gates

Therefore seeking for such sequence, called **quantum logic circuit**, is inseparable part of the design of quantum devices

Similarity to "LEGO"



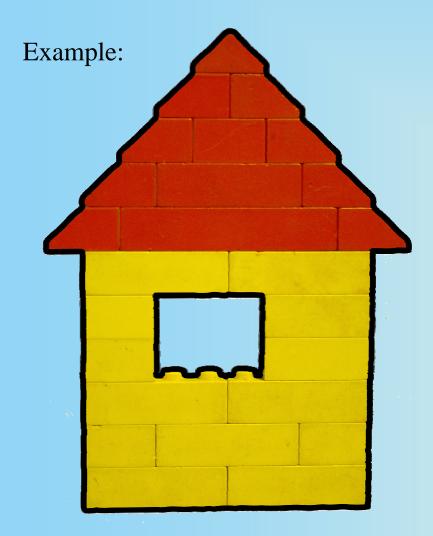
- We know what we want to build
- We can use a few types of bricks

- A set of bricks can be universal
- Each thing can be build in many ways

Our task:

Find a way how to build the specified thing efficiently using only bricks from some set.

Similarity to "LEGO"



- We know what we want to build
- We can use a few types of bricks

- A set of bricks can be universal
- Each thing can be build in many ways

Our task:

Find a way how to build the specified thing efficiently using only bricks from some set.

Basic notions

Qubit / System of n-qubits

- base vectors of $\mathcal{H}(\text{state space of qubit}) |0\rangle a |1\rangle$
- state space of *n*-qubit system $\mathcal{H}_n = \bigotimes_{i=1}^n \mathcal{H}$
- ON base of \mathcal{H}_n are for example vectors of the type: $|01...1\rangle \equiv |0\rangle \otimes |1\rangle \otimes ... \otimes |1\rangle$

Operation on isolated system of qubits = unitary operator U

 we want to write this operator U as successive action of simpler unitary operations – quantum gates

$$U = U_m \dots U_3 \cdot U_2 \cdot U_1$$

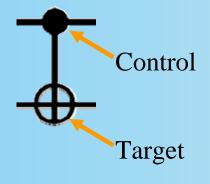
• **k-qubit quantum gate** = unitary operator, which acts nontrivially only on subsystem of k qubits

Basic quantum gates

• basic realizable operations

All one-qubit operations (rotations)

This gate is fully specified by U - unitary matrix 2x2



CNOT
Controlled NOT

Flips target qubit if control is in state |1 >

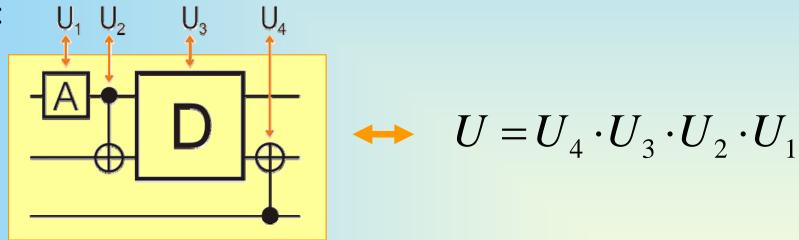
$$\begin{array}{c|cccc}
|00\rangle \to |00\rangle \\
|01\rangle \to |01\rangle \\
|10\rangle \to |11\rangle \\
|11\rangle \to |10\rangle
\end{array}
\Leftrightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Quantum Logic Circuit

= sequence of quantum gates

• are drawn using diagrams with following rules

Example:



- each horizontal line symbolizes one qubit
- quantum gate = symbol connecting qubits, on which the gate acts
- gates are carried out from left to right

Universality of basic gates

- A.Barenco et.al. proved that basic quantum gates form a universal set of quantum gates
- Each procedure, which for an arbitrary given unitary operator creates quantum logic circuit realizing it exactly, we denote as universal decomposition
- For dimensional reasons universal decomposition have to create QLC containing exponentially many CNOT gates (with respect to the number of qubits)

 in the worst case. $\geq \frac{1}{4} \left(4^n 3n 1 \right)$

A. Barenco, et.al., "Elementary gates for quantum computation", PRA AC5710(1995)

Decomposition of n-qubit unitary operators

• It's believed that interesting operators for quantum computation are realizable by polynomial number of basic gates (with respect to number of qubits)

Problem:

Present universal decompositions produce exponential number of gates also for those operators, which are known to be realizable with polynomial number of basic gates.

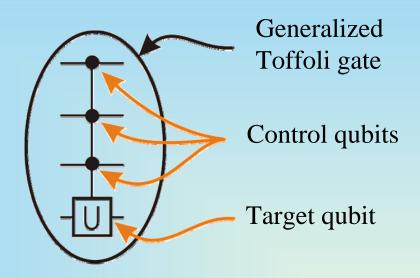
Possible solutions:

- guess the quantum logic circuit
- find a better universal decomposition
- optimize existing decomposition

Aim of my work

- Search for such improvements of Barenco's procedure, which will decrease the number of CNOT gates in the resulting quantum logic circuit for the chosen operator
- create a computer program, which will perform Barenco's procedure together with the proposed optimalization

Generalized Toffoli gate $\Lambda_m(U)$



- m+1-qubit quantum gate
- It acts by 1-qubit operation U on the target qubit, if all control qubits are in the state $|1\rangle$

$$\Lambda_{m}(U)|x_{1},...,x_{m},y\rangle=|x_{1},...,x_{m}\rangle\otimes U^{x_{1}\wedge\cdots\wedge x_{m}}|y\rangle$$

Matrix of operator U

QR decomposition

Diagonal matrix D and matrices Tpq

Decomposition of matrices T_{pq} and D into generalized Toffoli gates

QLC containing $\Lambda_{n-1}(U)$, $\Lambda_0(U)$ gates

Decomposition of generalized Toffoli gates into $\Lambda_1(.)$ gates

QLC containing $\Lambda_1(U)$, $\Lambda_0(U)$ gates

Decomposition of $\Lambda_1(U)$ gates into basic quantum gates

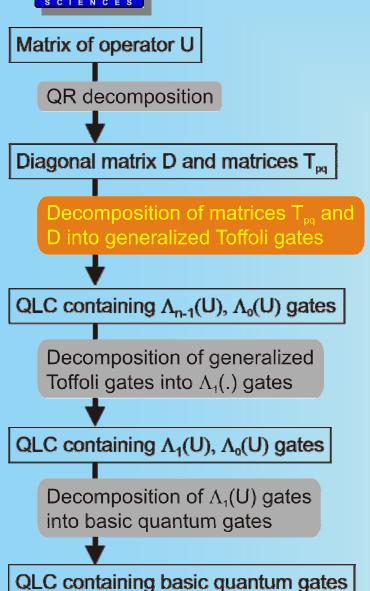
QLC containing basic quantum gates

• Each unitary matrix NxN (N=2ⁿ) can be written as multiplication:

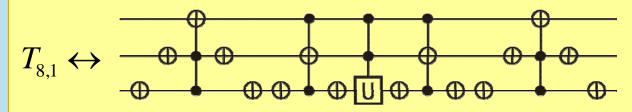
$$U = D^{-1} \cdot T_{2,1}^{-1} \cdot T_{3,1}^{-1} \cdot T_{3,2}^{-1} \cdots T_{2^{n},2^{n}-2}^{-1} \cdot T_{2^{n},2^{n}-1}^{-1}$$

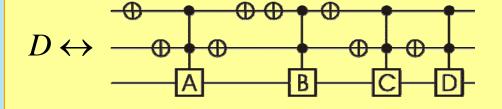
• where: $T_{pq}(\phi,\omega) = \begin{pmatrix} 1 & & & & & & \\ & 1 & & & & & \\ & & e^{i\phi}\sin\omega & & e^{i\phi}\cos\omega & \\ & & 1 & & & \\ & & & 1 & & \\ & & & \cos\omega & & -\sin\omega & \\ & & & & 1 & \\ & & & & & 1 \end{pmatrix},$

$$D = diag\left(e^{-i\alpha_1}, e^{-i\alpha_2}, \cdots, e^{-i\alpha_N}\right)$$



Example for decomposition of 3-qubit operator:





Matrix of operator U

QR decomposition

Diagonal matrix D and matrices Tpq

Decomposition of matrices T_{pq} and D into generalized Toffoli gates

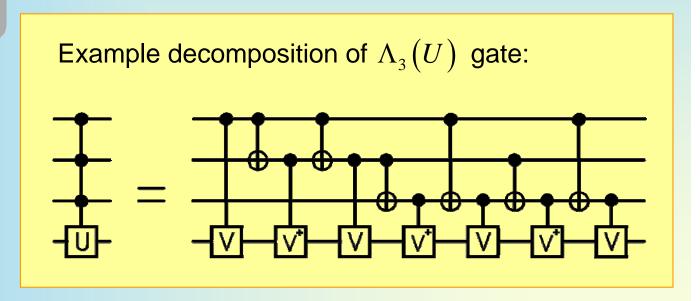
QLC containing $\Lambda_{n-1}(U)$, $\Lambda_0(U)$ gates

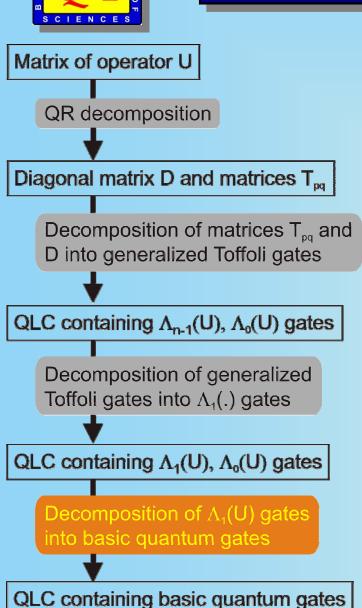
Decomposition of generalized Toffoli gates into $\Lambda_1(.)$ gates

QLC containing $\Lambda_1(U)$, $\Lambda_0(U)$ gates

Decomposition of $\Lambda_1(U)$ gates into basic quantum gates

QLC containing basic quantum gates



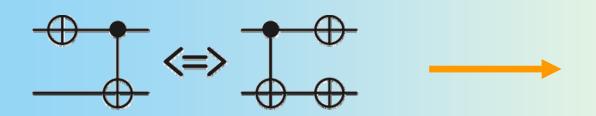


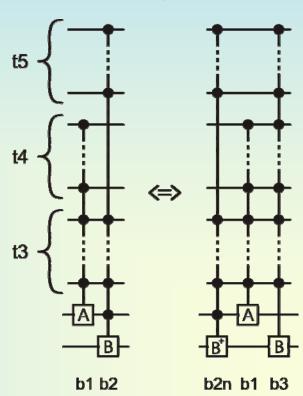
Example decomposition of $\Lambda_1(U)$ gate: $-\frac{\mathbb{E}}{\mathbb{E}} - \mathbb{E} - \mathbb{E}$

Properties of Generalized Toffoli gates

I have examined:

- commuting of pair of gates
- order exchange of two gates with modification of one gate
- conditions of merging two gates into one
- possible generalizations of identity:





Results - qualitatively

- I have created a computer program, which performs Barenco's decomposition of unitary operators (for n<7)
- Computer program contains also proposed optimization, which can be used for arbitrary n-qubit quantum logic circuit containing generalized Toffoli gates.
- For some 2-qubit unitary operators proposed optimization decrease the number of CNOT gates in the quantum circuit obtained by Barenco's decomposition to minimum

Results - quantitatively

• number of CNOT gates in different decompositions of typical unitary operators

Number of qubits	Barenco's decomposition	Optimized Barenco's decomposition	Decrease [%]	NQ decom- position	CS decom- position
2	20	10	50	3	4
3	576	379	35	21	26
4	8 000	6 278	21	105	118
5	91 520	76 208	16	465	494

$$\approx n^3 4^n$$

$$\approx \frac{1}{2}4^n$$